Testing isomorphism of lattices over CM-orders
نویسندگان
چکیده
A CM-order is a reduced order equipped with an involution that mimics complex conjugation. The Witt-Picard group of such an order is a certain group of ideal classes that is closely related to the “minus part” of the class group. We present a deterministic polynomial-time algorithm for the following problem, which may be viewed as a special case of the principal ideal testing problem: given a CM-order, decide whether two given elements of its Witt-Picard group are equal. In order to prevent coefficient blow-up, the algorithm operates with lattices rather than with ideals. An important ingredient is a technique introduced by Gentry and Szydlo in a cryptographic context. Our application of it to lattices over CM-orders hinges upon a novel existence theorem for auxiliary ideals, which we deduce from a result of Konyagin and Pomerance in elementary number theory.
منابع مشابه
Simple axiomatization of reticulations on residuated lattices
We give a simple and independent axiomatization of reticulations on residuated lattices, which were axiomatized by five conditions in [C. Mureşan, The reticulation of a residuated lattice, Bull. Math. Soc. Sci. Math. Roumanie 51 (2008), no. 1, 47--65]. Moreover, we show that reticulations can be considered as lattice homomorphisms between residuated lattices and b...
متن کاملConstructing unlabelled lattices
We present an improved orderly algorithm for constructing all unlabelled lattices up to a given size, that is, an algorithm that constructs the minimal element of each isomorphism class relative to some total order. Our algorithm employs a stabiliser chain approach for cutting branches of the search space that cannot contain a minimal lattice; to make this work, we grow lattices by adding a new...
متن کاملAlgorithms on Ideal over Complex Multiplication order
We show in this paper that the Gentry-Szydlo algorithm for cyclotomic orders, previously revisited by Lenstra-Silverberg, can be extended to complex-multiplication (CM) orders, and even to a more general structure. This algorithm allows to test equality over the polarized ideal class group, and finds a generator of the polarized ideal in polynomial time. Also, the algorithm allows to solve the ...
متن کاملLabeled posets are universal
Partially ordered sets labeled with k labels (k-posets) and their homomorphisms are examined. The homomorphicity order of k-posets is shown to be a distributive lattice. Homomorphicity orders of k-posets and k-lattices are shown to be universal in the sense that every countable poset can be embedded into them. Labeled posets are represented by directed graphs, and a categorical isomorphism betw...
متن کاملOn Recovering a Bounded Distributive Lattice from Its Endomorphism Monoid
The sub algebra functor Sub A is faithful for Boolean algebras (Sub A •Sub B implies A • B, see D. Sachs [7] ), but it is not faithful for bounded distributive lattices or unbounded distributive lattices. The automorphism functor Aut A is highly unfaithful even for Boolean algebras. The endomorphism functor End A is the most faithful of all three. B. M. Schein [8] and K. D.' Magill [5] establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.07373 شماره
صفحات -
تاریخ انتشار 2017